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Abstract

Implement Neural Network Deep Feed Forward on micro-controller using MicroPython.
This project is designed in pure MicroPython.
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1 Requirements

Download matrix.py' and neuralnetwork.py? and copy them on your MicroPython board. The same
code can be used on your computer with Python.

2 Get Started

I'm going to describe how work MicroPython - Neural Network with a very small an simple example.
In this classifier we are using a Sigmoid activation function as o(x) and his derivative as o’(z). Here is
what we want to predict, with ¢,, as inputs and s,, as the expected classification.
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Table 1: Training set

We use a neural network (3, 4, 2). With 3 values in the input layer, 4 values in the hidden layer and
2 values in the output layer.

'matrix.py: https: //gitlab.com/olivier.len02/MicroPython-Matrix/-/blob/master/micropython/matrix.py
2neurainetwork.py: https://gitlab.com/olivier.len02/MicroPython-NeuralNetwork/-/blob/master/micropython/
neuralnetwork.py
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Figure 1. Neural network (3, 4, 2) detail

Input layer is represented by the matrix I and the output by the matrix O. Hidden layer is matrix H.
Weights between matrix I and H is matrix W;,. Weights between matrix H and O is matrix Wh,,.
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From those matrices you can propagate the input I to the output O using the following calcula-
fions:

H:J(I~Wih)

0= U(H : Who) ®

If the network is properly tfrained, the output O should be very close from the expected S matrix.
If not, this mind we need to frain the artificial neural network with the fraining data-set and back-
propagate the error to adjust weights.

We are now going to use propagated results to back-propagate the error of each layers. E, and
E,, are error of layers O and H. Matrix gW;,, and gW;,;, are the gradient to adjust weights.
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Weights are updated. Training continue until we are satisfied with the result.

2.1 Train Neural Network

I recommend training Neural Network on a computer. Otherwise you may quickly run infto memory
error on your MicroPython board, even if you use garbage collect.

from matrix import Matrix
import neuralnetwork as nn

# Create neural network with an input layer of 3, an hidden layer of 4

# and an output layer of 2 by default the activation function s sigmoid()
# but o ReLlU also ezist as relu()

ann = nn.DFF((3, 4, 2))

Now let’s create a training set with input matrix and output matrix.
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We frain the network a thousand times with the training set. The learning rate (Irate) is set to one
by default

print(’Learning,progress’)
for i in range (1000):
for a, s in training_set:
ann.train(a, s, lrate=1)
if 1 % 10 ==
print(’.?, end=’?)

Check if you are satisfied with the training.

def short(a):
return round(a, 3)

print(’=> * 20)
score = True
for a, s in training_set:
p = ann.predict(a)
scr = str(p.map(round)) == str(s.map(short))
print (a.map(short), p.map(short), p.map(round), s.map(short), scr)
score &= scr
print (’Goodylearning?’, score)

Print out weights.

print (=’ % 20)

print (’Rounded_ weights’)

for i, w in enumerate(ann.weights):
print (°W{}’.format (i), w.map(round))




2.2 Predict

With the trained weights, we can now use our network.

from matrix import Matrix
from neuralnetwork import DFF

ann = DFF(
(3, 4, 2),
weights=[
Matrix([[-1, -4, 6, -4], [5, O, 6, 1], [4, -4, -8, 6]11),
Matrix([[-10, 101, [5, -51, [7, -71, [6, -611)
]
)

d = Matrix(((1, 0, 1)))
p = ann.predict(d)
print (p)
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