MicroPython - Neural Network

Implement Neural Network Deep Feed Forward on micro-controller using MicroPython

Olivier Lenoir
olivierlen02@gmail.com

February 14, 2021

Abstract

Implement Neural Network Deep Feed Forward on micro-controller using MicroPython.
This project is designed in pure MicroPython.

neuralnetwork.DFF((3, 4, 2
(()) neuralnetwork.DFF((3, 4, 5, 2))

1 Requirements

Download matrix.py' and neuralnetwork.py? and copy them on your MicroPython board. The same
code can be used on your computer with Python.

2 Get Started

I'm going to describe how work MicroPython - Neural Network with a very small an simple example.
In this classifier we are using a Sigmoid activation function as o(x) and his derivative as o’(z). Here is
what we want to predict, with ¢,, as inputs and s,, as the expected classification.

.
=

—_—— - OO0 00O

— 0O —0—-00 —|2®
O—0—-0——=0|%

Table 1: Training set

We use a neural network (3, 4, 2). With 3 values in the input layer, 4 values in the hidden layer and
2 values in the output layer.

'matrix.py: https: //gitlab.com/olivier.len02/MicroPython-Matrix/-/blob/master/micropython/matrix.py
2neurainetwork.py: https://gitlab.com/olivier.len02/MicroPython-NeuralNetwork/-/blob/master/micropython/
neuralnetwork.py

mailto:olivier.len02@gmail.com
https://gitlab.com/olivier.len02/MicroPython-Matrix/-/blob/master/micropython/matrix.py
https://gitlab.com/olivier.len02/MicroPython-NeuralNetwork/-/blob/master/micropython/neuralnetwork.py
https://gitlab.com/olivier.len02/MicroPython-NeuralNetwork/-/blob/master/micropython/neuralnetwork.py

DI

%

neuralnetwork.DFF((3, 4, 2))

d

Figure 1. Neural network (3, 4, 2) detail

Input layer is represented by the matrix I and the output by the matrix O. Hidden layer is matrix H.
Weights between matrix I and H is matrix W;,. Weights between matrix H and O is matrix Wh,,.

1
olz) = 1+e®
o'(x) = o(x) - (1 - o(x)) M
o' (1s) =25 - (1 —2,)
I=(ir i i) 2
wiZl wiZz wi::s wi;}
Win = wlzi11 w%'if wé 3 wé Y ©))
wé,l ws w§73 w§,4
H=(h1 hy hs hy) %)
_ w2,01 w2,02
Wio = | uie whs ®)
wiy wi
O = (01 02) (6)
S = (51 82) (7)

From those matrices you can propagate the input I to the output O using the following calcula-
fions:

H:J(I~Wih)

0= U(H : Who) ®

If the network is properly tfrained, the output O should be very close from the expected S matrix.
If not, this mind we need to frain the artificial neural network with the fraining data-set and back-
propagate the error to adjust weights.

We are now going to use propagated results to back-propagate the error of each layers. E, and
E,, are error of layers O and H. Matrix gW;,, and gW;,;, are the gradient to adjust weights.

E,=(S—0)xd(0) ©
gWho = H" - E,
Eh = (Eo . Who) X O'/(H)

10
gWin =1I" - By (10

2

LL%O ::Lv%o +‘9LVﬁo

an
Win = Win + gWip

Weights are updated. Training continue until we are satisfied with the result.

2.1 Train Neural Network

I recommend training Neural Network on a computer. Otherwise you may quickly run infto memory
error on your MicroPython board, even if you use garbage collect.

from matrix import Matrix
import neuralnetwork as nn

Create neural network with an input layer of 3, an hidden layer of 4

and an output layer of 2 by default the activation function s sigmoid()
but o ReLlU also ezist as relu()

ann = nn.DFF((3, 4, 2))

Now let’s create a training set with input matrix and output matrix.

training_set = [
[Matrix ([[O,
[Matrix ([[O,
[Matrix ([[0,
[Matrix ([[O,
[Matrix ([[1,
[Matrix ([[1,
[Matrix ([[1,
[Matrix ([[1,
]

0]1), Matrix([[1, 0]11)],
111), Matrix([[O0, 111)],
111), Matrix ([[O0, 111)1,
0]1), Matrix([[1, 0]1)],
011), Matrix([[0, 111)],
111), Matrix([[1, 011)]1,
111), Matrix ([[O0, 111)1,
0]1), Matrix([[1, 0]1)],

OO KR P PR RPE OO

We frain the network a thousand times with the training set. The learning rate (Irate) is set to one
by default

print(’Learning,progress’)
for i in range (1000):
for a, s in training_set:
ann.train(a, s, lrate=1)
if 1 % 10 ==
print(’.?, end=’?)

Check if you are satisfied with the training.

def short(a):
return round(a, 3)

print(’=> * 20)
score = True
for a, s in training_set:
p = ann.predict(a)
scr = str(p.map(round)) == str(s.map(short))
print (a.map(short), p.map(short), p.map(round), s.map(short), scr)
score &= scr
print (’Goodylearning?’, score)

Print out weights.

print (=’ % 20)

print (’Rounded_ weights’)

for i, w in enumerate(ann.weights):
print (°W{}’.format (i), w.map(round))

2.2 Predict

With the trained weights, we can now use our network.

from matrix import Matrix
from neuralnetwork import DFF

ann = DFF(
(3, 4, 2),
weights=[
Matrix([[-1, -4, 6, -4], [5, O, 6, 1], [4, -4, -8, 6]11),
Matrix([[-10, 101, [5, -51, [7, -71, [6, -611)
]
)

d = Matrix(((1, 0, 1)))
p = ann.predict(d)
print (p)

References

(1) Jean-Claude Heudin, Comprendre le deep learning, une infroduction aux réseaux de neurones,
Science-eBook, Octobre 2016, ISBN 979-10-91245-44-9.

(2) Jean-Claude Heudin, Infelligence Artificielle, manuel de survie, Science-eBook, Octobre 2017,
ISBN 978-2-37743-000-0.

(3) Damien George, MicroPython, George Robotics Limited, https://micropython.org/.

(4) Nicholas H. Tollervey Programming with MicroPython, embedded programming with MicroPython
& Python, O'Relly, Tst edition, October 2017, ISBN 978-1-491-97273-1.

(5) Olivier Lenoir, MicroPython - Matrix, GitLab, January 2021, https://gitlab.com/olivier.len02/
MicroPython-Matrix/

(6) Tutorials Point, Arfificial Neural Network Tutorial, 2021, https://www.tutorialspoint.com/
artificial_neural_network/index.htm

(7) Wikipedia, Sigmoid function, wikipedia.org, 2021, https://en.wikipedia.org/wiki/Sigmoid_
function

https://micropython.org/
https://gitlab.com/olivier.len02/MicroPython-Matrix/
https://gitlab.com/olivier.len02/MicroPython-Matrix/
https://www.tutorialspoint.com/artificial_neural_network/index.htm
https://www.tutorialspoint.com/artificial_neural_network/index.htm
https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Sigmoid_function

	Requirements
	Get Started
	Train Neural Network
	Predict

