
MicroPython - Neural Network
Implement Neural Network Deep Feed Forward on micro-controller using MicroPython

Olivier Lenoir
olivier.len02@gmail.com

February 14, 2021

Abstract

Implement Neural Network Deep Feed Forward on micro-controller using MicroPython.
This project is designed in pure MicroPython.

neuralnetwork.DFF((3, 4, 2))
neuralnetwork.DFF((3, 4, 5, 2))

1 Requirements

Download matrix.py1 and neuralnetwork.py2 and copy them on your MicroPython board. The same
code can be used on your computer with Python.

2 Get Started

I’m going to describe how work MicroPython - Neural Network with a very small an simple example.
In this classifier we are using a Sigmoid activation function as σ(x) and his derivative as σ′(x). Here is
what we want to predict, with in as inputs and sn as the expected classification.

i1 i2 i3 s1 s2
0 0 0 1 0
0 0 1 0 1
0 1 1 0 1
0 1 0 1 0
1 1 0 0 1
1 1 1 1 0
1 0 1 0 1
1 0 0 1 0

Table 1: Training set

We use a neural network (3, 4, 2). With 3 values in the input layer, 4 values in the hidden layer and
2 values in the output layer.

1matrix.py: https://gitlab.com/olivier.len02/MicroPython-Matrix/-/blob/master/micropython/matrix.py
2neuralnetwork.py: https://gitlab.com/olivier.len02/MicroPython-NeuralNetwork/-/blob/master/micropython/

neuralnetwork.py

1

mailto:olivier.len02@gmail.com
https://gitlab.com/olivier.len02/MicroPython-Matrix/-/blob/master/micropython/matrix.py
https://gitlab.com/olivier.len02/MicroPython-NeuralNetwork/-/blob/master/micropython/neuralnetwork.py
https://gitlab.com/olivier.len02/MicroPython-NeuralNetwork/-/blob/master/micropython/neuralnetwork.py

neuralnetwork.DFF((3, 4, 2))

I

H

O

Figure 1: Neural network (3, 4, 2) detail

Input layer is represented by the matrix I and the output by the matrix O. Hidden layer is matrix H.
Weights between matrix I and H is matrix Wih. Weights between matrix H and O is matrix Who.

σ(x) =
1

1 + e−x

σ′(x) = σ(x) · (1− σ(x))

σ′(xσ) = xσ · (1− xσ)

(1)

I =
(
i1 i2 i3

)
(2)

Wih =

wih1,1 wih1,2 wih1,3 wih1,4
wih2,1 wih2,2 wih2,3 wih2,4
wih3,1 wih3,2 wih3,3 wih3,4

 (3)

H =
(
h1 h2 h3 h4

)
(4)

Who =


who1,1 who1,2
who2,1 who2,2
who3,1 who3,2
who4,1 who4,2

 (5)

O =
(
o1 o2

)
(6)

S =
(
s1 s2

)
(7)

From those matrices you can propagate the input I to the output O using the following calcula-
tions:

H = σ(I ·Wih)

O = σ(H ·Who)
(8)

If the network is properly trained, the output O should be very close from the expected S matrix.
If not, this mind we need to train the artificial neural network with the training data-set and back-
propagate the error to adjust weights.

We are now going to use propagated results to back-propagate the error of each layers. Eo and
Eh are error of layers O and H. Matrix gWho and gWih are the gradient to adjust weights.

Eo = (S −O)× σ′(O)

gWho = HT · Eo
(9)

Eh = (Eo ·Who)× σ′(H)

gWih = IT · Eh
(10)

2

Who =Who + gWho

Wih =Wih + gWih

(11)

Weights are updated. Training continue until we are satisfied with the result.

2.1 Train Neural Network

I recommend training Neural Network on a computer. Otherwise you may quickly run into memory
error on your MicroPython board, even if you use garbage collect.

from matrix import Matrix

import neuralnetwork as nn

Create neural network with an input layer of 3, an hidden layer of 4

and an output layer of 2 by default the activation function is sigmoid ()

but a ReLU also exist as relu()

ann = nn.DFF((3, 4, 2))

Now let’s create a training set with input matrix and output matrix.

training_set = [

[Matrix ([[0, 0, 0]]), Matrix ([[1, 0]])],

[Matrix ([[0, 0, 1]]), Matrix ([[0, 1]])],

[Matrix ([[0, 1, 1]]), Matrix ([[0, 1]])],

[Matrix ([[0, 1, 0]]), Matrix ([[1, 0]])],

[Matrix ([[1, 1, 0]]), Matrix ([[0, 1]])],

[Matrix ([[1, 1, 1]]), Matrix ([[1, 0]])],

[Matrix ([[1, 0, 1]]), Matrix ([[0, 1]])],

[Matrix ([[1, 0, 0]]), Matrix ([[1, 0]])],

]

We train the network a thousand times with the training set. The learning rate (lrate) is set to one
by default

print('Learning progress ')

for i in range (1000):

for a, s in training_set:

ann.train(a, s, lrate =1)

if i % 10 == 0:

print('.', end='')

Check if you are satisfied with the training.

def short(a):

return round(a, 3)

print('=' * 20)

score = True

for a, s in training_set:

p = ann.predict(a)

scr = str(p.map(round)) == str(s.map(short))

print(a.map(short), p.map(short), p.map(round), s.map(short), scr)

score &= scr

print('Good learning?', score)

Print out weights.

print('=' * 20)

print('Rounded weights ')

for i, w in enumerate(ann.weights):

print('W{}'.format(i), w.map(round))

3

2.2 Predict

With the trained weights, we can now use our network.

from matrix import Matrix

from neuralnetwork import DFF

ann = DFF(

(3, 4, 2),

weights =[

Matrix ([[-1, -4, 6, -4], [5, 0, 6, 1], [4, -4, -8, 6]]),

Matrix ([[-10, 10], [5, -5], [7, -7], [6, -6]])

]

)

d = Matrix (((1, 0, 1)))

p = ann.predict(d)

print(p)

References

[1] Jean-Claude Heudin, Comprendre le deep learning, une introduction aux réseaux de neurones,
Science-eBook, Octobre 2016, ISBN 979-10-91245-44-9.

[2] Jean-Claude Heudin, Intelligence Artificielle, manuel de survie, Science-eBook, Octobre 2017,
ISBN 978-2-37743-000-0.

[3] Damien George, MicroPython, George Robotics Limited, https://micropython.org/.

[4] Nicholas H. Tollervey Programming with MicroPython, embedded programming with MicroPython
& Python, O’Relly, 1st edition, October 2017, ISBN 978-1-491-97273-1.

[5] Olivier Lenoir, MicroPython - Matrix, GitLab, January 2021, https://gitlab.com/olivier.len02/

MicroPython-Matrix/.

[6] Tutorials Point, Artificial Neural Network Tutorial, 2021, https://www.tutorialspoint.com/

artificial_neural_network/index.htm

[7] Wikipedia, Sigmoid function, wikipedia.org, 2021, https://en.wikipedia.org/wiki/Sigmoid_

function

4

https://micropython.org/
https://gitlab.com/olivier.len02/MicroPython-Matrix/
https://gitlab.com/olivier.len02/MicroPython-Matrix/
https://www.tutorialspoint.com/artificial_neural_network/index.htm
https://www.tutorialspoint.com/artificial_neural_network/index.htm
https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Sigmoid_function

	Requirements
	Get Started
	Train Neural Network
	Predict

